Physiological adaptation of Corynebacterium glutamicum to benzoate as alternative carbon source - a membrane proteome-centric view.
نویسندگان
چکیده
The ability of microorganisms to assimilate aromatic substances as alternative carbon sources is the basis of biodegradation of natural as well as industrial aromatic compounds. In this study, Corynebacterium glutamicum was grown on benzoate as sole carbon and energy source. To extend the scarce knowledge about physiological adaptation processes occurring in this cell compartment, the membrane proteome was investigated under quantitative and qualitative aspects by applying shotgun proteomics to reach a comprehensive survey. Membrane proteins were relatively quantified using an internal standard metabolically labeled with (15)N. Altogether, 40 proteins were found to change their abundance during growth on benzoate in comparison to glucose. A global adaptation was observed in the membrane of benzoate-grown cells, characterized by increased abundance of proteins of the respiratory chain, by a starvation response, and by changes in sulfur metabolism involving the regulator McbR. Additional to the relative quantification, stable isotope-labeled synthetic peptides were used for the absolute quantification of the two benzoate transporters of C. glutamicum, BenK and BenE. It was found that both transporters were expressed during growth on benzoate, suggesting that both contribute substantially to benzoate uptake.
منابع مشابه
Fermentative Production of Lysine by Corynebacterium glutamicum from Different Carbon Sources
Production of lysine by Corynebacterium glutamicum (PTCC 1532) from different agricultural by-products (molasses and pulpy waste date) was compared to glucose as raw materials. For this purpose, ammonium sulphate was selected as a constant nitrogen source. The effect of different nitrogen sources was also investigated with glucose as a constant carbon source. The production of L-lysine was exam...
متن کاملGenome-wide investigation of aromatic acid transporters in Corynebacterium glutamicum.
Genome-wide data mining indicated that six genes (ncgl1031, ncgl2302, ncgl2325, ncgl2326, ncgl2922 and ncgl2953) encoding putative transport proteins are involved in uptake of various aromatic compounds that are further degraded through the beta-ketoadipate, gentisate and resorcinol pathways in Corynebacterium glutamicum. The gentisate (GenK/NCgl2922) and vanillate (VanK/NCgl2302) transporters ...
متن کاملAdaptation of Corynebacterium glutamicum to ammonium limitation: a global analysis using transcriptome and proteome techniques.
Theresponse of Corynebacterium glutamicum to ammonium limitation was studied by transcriptional and proteome profiling of cells grown in a chemostat. Our results show that ammonium-limited growth of C. glutamicum results in a rearrangement of the cellular transport capacity, changes in metabolic pathways for nitrogen assimilation, amino acid biosynthesis, and carbon metabolism, as well as a dec...
متن کاملSuccinate production from CO2-grown microalgal biomass as carbon source using engineered Corynebacterium glutamicum through consolidated bioprocessing
The potential for production of chemicals from microalgal biomass has been considered as an alternative route for CO₂ mitigation and establishment of biorefineries. This study presents the development of consolidated bioprocessing for succinate production from microalgal biomass using engineered Corynebacterium glutamicum. Starch-degrading and succinate-producing C. glutamicum strains produced ...
متن کاملFunctional characterization of the glxR deletion mutant of Corynebacterium glutamicum ATCC 13032: involvement of GlxR in acetate metabolism and carbon catabolite repression.
Recently, a cyclic AMP receptor protein homologue, GlxR, was reported to bind to the upstream regions of several genes involved in the regulation of diverse physiological processes in Corynebacterium glutamicum. However, the function of GlxR has not yet been explored in C. glutamicum in vivo using a glxR deletion mutant. Therefore, this study examines the role of GlxR as a repressor in glyoxyla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proteomics
دوره 9 14 شماره
صفحات -
تاریخ انتشار 2009